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1.  INTRODUCTION 

The peroxidases comprise a class of enzymes that catalyze the H202 mediated oxidation of an 

enormous range of biological substrates (Dawson 1988; Poulos 1988). The heme containing enzyme 

cytochrome-c-peroxidase (CCP) from yeast reacts with H202 to form a two-electron oxidized intermediate: 

compound ES. This intermediate in turn accepts electrons sequentially from two ferrous cytochromes c. 

One oxidizing equivalent in compound ES is stored as an oxyferryl (Fe(TV)=0) heme, while the other is 

stored as a radical species on an amino acid side chain. This is distinct from many other peroxidases, 

where the second oxidizing equivalent is stored on the porphyrin macrocycle as a Tt-cation radical. 

Identification of this amino acid and the nature of the radical proved to be problematical, because the 

presence of a multiplicity of spin-coupled states between the S=l/2 radical with the S=l oxyferryl heme 

(Houseman et al. 1993; Fishel et al. 1991; Goodin and McRee 1993; McRee et al. 1994) result in an 

unusual EPR line shape and EPR properties. Intensive studies of compound ES of CCP by site-directed 

mutagenesis, EPR and ENDOR spectroscopies, x-ray crystallography, and theoretical calculations have 

concluded unambiguously that the radical is housed on the indole side chain of tryptophan-191 (Houseman 

et al. 1993; Fishel et al. 1991; Goodin and McRee 1993; McRee et al. 1994; Sivaraja et al. 1989; Erman 

et al. 1989; Scholes et al. 1989; Krauss and Garmer 1993; Fülöp et al. 1994; Huyett et al. 1995). It has 

also been difficult to determine whether the tryptophan radical is a neutral radical or a cation radical, 

resulting from oxidation with or without loss of a proton, respectively. Indole radicals are formed at 

highly oxidizing potentials (~1 V vs. S.H.E.) and exist in solution as an equilibrium of neutral and cationic 

forms (Jovanovic, Steenken, and Simic 1991). The pl^ of this equilibrium is -4, and therefore the 

presence of a cation radical in CCP at physiological pH must involve some special stabilization of the 

cationic form of the radical by the protein. Indirect evidence of a cation stabilizing propensity at the site 

of the indole side chain of tryptophan-191 has been obtained in the observation that cationic heterocyclic 

molecules and buffer cations bind to a cavity created by mutating the indole side chain to hydrogen 

(tryptophan-191 -» glycine) (Fitzgerald et al. 1994; Miller, Han, and Kraut 1994; Fitzgerald et al. 1995). 

Complete characterization of the properties of the radical of CCP is required for a detailed understanding 

of the mechanism of action of this enzyme. Further, protein engineering, especially at the site of this 

radical, may lead to modified enzymes capable of alternative oxidation pathways for organic synthesis or 

bioremediation. 

In the most recent ENDOR study of CCP (Huyett et al. 1995), the utilization of various isotopically 

labeled (at tryptophan) CCPs has led to the assignment of spin densities for some atoms in the indole ring 
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of the tryptophan-191 radical. To aid in the interpretion of these ENDOR results in terms of a cation or 

neutral radical, one must adduce reliable theoretical models for both forms. Calculations of spin-densities 

that have been used for this purpose have so far been limited to Hiickel-McLachlan Molecular Orbital 

(HMMO) (Hoffman et al. 1981) and restricted to open-shell Hartree-Fock (ROSHF) (Krauss and Garmer 

1993) calculations, which are now known to be unlikely to provide reliable spin densities for rc-radicals 

(Adamo, Barone, and Fortunelli 1995; Qin and Wheeler 1995). 

Accurate ab initio methods for the determination of ground state molecular properties generally, and 

spin densities in particular, will require inclusion of electron correlation, sufficient basis-set size and 

sophistication, and, for medium sized organic molecules, practicability in terms of disk space, computer 

time, and code availability. The most popular correlated ab initio method has utilized the second-order 

M0ller-Plesset (MP2) perturbation theory. MP2 methods are, however, very expensive computationally, 

and most medium-sized organic molecules of interest are currently beyond the bounds of practicability. 

Very recently, methods using Density Functional Theory (DFT) have become available in the program 

Gaussian92/DFT (Frisch et al. 1995) and provide correlated methods of high accuracy. These include 

standard local functionals* (Becke 1989; Vosko, Wilk, and Nusair 1980; Lee, Yang, and Parr 1988) as 

well as two new hybrid density functionals (B3LYP and B3P86) (Stephens et al. 1994; Frisch et al. 1995; 

Becke 1993; Perdew 1986) of the type introduced by Becke1" (1993). Stephens and coworkers (Stephens 

et al. 1994; Stephens et al., to be published; and Finley and Stephens, to be published) have calculated 

the geometries, force fields, and vibrational absorption and vibrational circular dichroism (VCD) spectra 

of a variety of closed-shell molecules using the aforementioned functionals in addition to using SCF and 

MP2 methods. Taking advantage of the sensitivity of predicted VCD spectra to the quality of the force 

field used, they were able to demonstrate that the hybrid functional B3LYP was competitive with MP2 

methods in terms of accuracy, and that the LSDA and BLYP functionals were significantly less reliable. 

They also demonstrated that for B3LYP calculations the 6-31G* basis set** (Hehre et al. 1986) is 

* The local functionals employed by Gaussian92/DFT include the standard LSDA (also called SVWN) functional, the local 
correlation functional VWN, and the BLYP functional combining the gradient of Becke and the LYP correlation functional 
(Becke 1989; Vosko, Wilk, and Nusair 1980; Lee, Yang, and Parr 1988). 

t The B3LYP (Becke3LYP) functional (Stephens et al. 1994) is a Gaussian92/DFT (Frisch et al. 1995) implementation of the 
three-parameter hybrid functional introduced by Becke (1993). It is a hybrid of Hartee-Fock exchange with local and gradient 
corrected exchange and correlation terms. An alternative functional of this type available in Gaussian92/DFT is the B3P86 
(Becke3P86) functional, which consists of Becke's three-parameter hybrid functional with the nonlocal correlation provided 
by the "Perdew 86" (Perdew 1986) expression. 

** Note that we use 6 d functions in TZ2P, 6-31G*. 6-31-fG*, 3-21G*. and 6-31G**. 



sufficient for accurate results. DFT calculations of open-shell systems have yielded good results for a 

variety of properties (Adamo, Barone, and Fortunelli 1995; Qin and Wheeler 1994; Laming, Handy, and 

Amos 1993; Eriksson et al. 1993, 1994; Barone and Adamo 1994; Austen, Eriksson, and Boyd 1994). 

Where the new hybrid functionals have been used on open-shell systems, Adamo, Barone, and Fortunelli 

(1995) conclude that for ground state geometries and for thermochemical, infrared, and hyperfine 

parameters of a variety of molecules, the B3LYP method is the current functional of choice, and that the 

local functionals are significantly less reliable. On the other hand, Qin and Wheeler (1995) noted that 

both hybrid and local functionals provided reasonable spin densities for phenoxy radical at the 6-3IG* 

basis set level. 

With the aforementioned studies in mind, we have chosen to carry out DFT calculations using the 

B3LYP functional and the 6-3 IG* basis set on the tryptophan analog 3-methyl indole (skatole) (1), 

3-methyl indole neutral radical (2), and 3-methyl-indole cation radical (3). Geometries, vibrational 

frequencies, and spin densities are calculated. To examine the basis set dependence of the B3LYP results, 

we have also calculated the geometries and atomic spin densities for 1, 2, and 3 utilizing the 6-31+G*, 

3-21G*, and TZ2P basis sets. For comparison, the geometries and spin densities are also calculated at 

the MP2 level and the 6-3 IG** basis set. These results are compared to experimental data and to earlier 

calculations. 

2. METHODS 

Calculations presented here were carried out using the GAUSSIAN92/DFT or GAUSSIAN94 (Frisch 

et al. 1995) suite of programs running on a Cray-2 or a Silicon Graphics Inc. Power Challenge Array 

located at the U.S. Army Research Laboratory (ARL). The starting geometry for 3-methyl indole was a 

3-2 IG* optimized geometry that was calculated at the SCF level of approximation using CADPAC 5.0 

(Amos 1992) (in UNICHEM) on the Scripps Cray Y-MP. The geometries, Mulliken spin densities, and 

harmonic force fields were calculated using the spin-restricted B3LYP functional for the closed-shell 

3-methyl indole (skatole) (1), and the spin-unrestricted B3LYP functional for the open-shell neutral radical 

of 3-methyl indole (2) and the open-shell radical cation of 3-methyl indole (3). B3LYP geometries for 

1,2, and 3 and atomic spin densities for 2 and 3 were determined using the TZ2P, 6-31G*, 6-31+G*, and 

3-21G* basis sets. In addition, the vibrational frequencies of 1,2, and 3 were calculated using the 6-31G* 

basis set The "fine" integration grid was used in all of the DFT calculations. Ab initio MO geometries 

and Mulliken spin densities were also calculated at the spin-restricted MP2 level of theory for 1 and at 



the spin-unrestricted MP2 level of theory for 2 and 3. Unfortunately, we were unable to obtain MP2 

vibrational frequencies due to a lack of disk resources. All of the MP2 calculations were obtained using 

the frozen core approximation and the 6-3 IG** basis set. Because 2 and 3 each have a doublet 

multiplicity, the expectation value of the S2 operator is 0.75. However, as the UHF wavefunction is not 

an eigenfunction of the S2 operator, it is usually contaminated with higher multiplicities (quartets, etc.) 

resulting in <S2> being greater than 0.75. In the case of the B3LYP calculations, <S2> was determined 

to range from 0.7596 to 0.7694 for 2 and 3 (see Table 1) for all basis sets employed, indicating a good 

representation of the doublet state. We note that for the DFT technique, the interpretation of <S2> is not 

straightforward (Qin and Wheeler 1995) because the calculations yield electron densities, not electronic 

wavefunctions. For the MP2 calculations on 2 and 3, <S2> was calculated to be 0.9476 and 0.8478, 

respectively, indicating a somewhat worse representation of the doublet state relative to the B3LYP 

calculations. 

3. RESULTS AND DISCUSSION 

B3LYP geometries and energies of 1, 2, and 3, are shown for each of the basis sets employed in this 

study in Table 1. The B3LYP/TZ2P geometries for the indole portion of 1 are compared to the geometry 

reported by Chadwick (1984), which was obtained by averaging the bond angles and distances of the 

structures of 34 3-substituted indoles from the Cambridge Crystallographic Database. Overall, the 

geometry of 1 compares extremely well to experiment, with an average difference between the calculated 

and experimental geometries of 0.005 Ä. Generally, the predicted geometry exhibits longer bonds than 

the experimental geometry. The largest deviation between theory and experiment is for the C6-C7 bond, 

which is 0.013 Ä longer than experiment The results obtained using the 3-21G*, 6-31G*, and 6-31+G* 

basis sets lead to geometries differing from experiment, on average, by 0.013 Ä, 0.010 Ä, and 0.011 Ä, 

respectively. The MP2/6-31G** geometries and energies for 1,2, and 3, are also shown in Table 1. The 

MP2/6-31G** geometry for 1 is very similar to the B3LYP/TZ2P and B3LYP/6-31G* geometries, 

differing by an average of only 0.005 Ä and 0.003 Ä, respectively. The MP2/6-31G** geometry for 1 

differs from that of Chadwick (1984) by 0.009 Ä, with the largest deviation being 0.017 Ä for the C6-C7 

bond. The previously reported ROSHF (Krauss and Garmer 1993) geometry for indole differs from 

experiment by an average of 0.020 Ä. To our knowledge, there are no experimental geometries available 

for 2 or 3. Both B3LYP/TZ2P and MP2/6-31G** calculations predict significant changes upon oxidation 

from 1 to either 2 or 3. These predicted differences are qualitatively similar but quantitatively different 

between the two methods. Going from 1 to 2 the B3LYP/TZ2P prediction shows a lengthening of the 
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Figure 1. Atom numbering for 3-methyl indole (skatole). 

C2-C3 bond by 0.069 Ä and a shortening of the N1-C2 bond by 0.068 Ä. Going from 1 to 2 the MP2 

prediction shows lengthening of the C2-C3 and C3-C9 bonds by 0.028 Ä and 0.030 Ä, respectively, and 

a shortening of the N1-C2 bond by 0.062 Ä. Going from 1 to 3 the B3LYP/TZ2P prediction shows a 

lengthening of the C2-C3, C8-N1, and C6-C7 bonds by 0.061 Ä, 0.032 Ä, and 0.027 Ä, respectively, and 

a shrinking of the N1-C2, C3-C9, and C7-C8 bonds by 0.053 Ä, 0.021 Ä, and 0.024 Ä, respectively. 

Going from 1 to 3 the MP2/6-31G** prediction shows a lengthening of the C2-C3, C3-C9, and C4-C5 

bonds by 0.028 Ä, 0.024 Ä, and 0.027 Ä, respectively, and a shrinking of the N1-C2 and C9-C4 bonds 

of 0.029 Ä and 0.028 Ä, respectively. 

To our knowledge, there is no complete, assigned, experimental vibrational spectrum of 1, and for 2 

or 3 there exists no information at all. However, several modes for tryptophan have been assigned and 

experimental frequencies measured (Austin, Jordan, and Spiro 1993; Takeuchi and Harada 1986; Aldrich 

Library FT-IR Spectra 1989). These are shown in Table 2. B3LYP/6-31G* frequencies corresponding 

to these modes for 1, 2, and 3 are also shown in Table 2. The "zero" frequencies were all less than 

10 cm-1 in these calculations. Comparison of the differences between the predictions for 1 and the 

experimental frequencies reveals very good agreement, with the predicted frequencies differing by an 



Table 2. Selected Vibrational Frequencies of 3-Methyl Indoles3 

Modeb Description0 

Experimental Frequencies B3LYP/6-31G* 

Ad 

(cm"1) 
Be 

(cm"1) 
Cf 

(cm"1) 
1 

(cm"1) 
2 

(cm"1) 
3 

(cm"1) 

Wl Benz. v8a + N1-C8 Str. 1622 1614 1680 1609 1623 

W2 Benz. v8b 1575 1578 1637 1543 1647 

W3 C2-C3 Pyrrole Str. 1555 1550 1615 1455 1295g 

W4 Benz. v19b 1496 1502 1487 1501 

W5 Benz. v19a 1462 1462 1431 1467 

W6 N1-C2-C3 Str. + Nl-H Bend 1361 1389 1393 1388 

W7 Pyrrole Ring Breath. 1342 1345 1336 1387 1379 

W8 C3-C9 Str. + Nl-H Bend 1305 1282 1331 1323 

W10 C-H + C3-C10 Str. 1238 1258 1264 1213 

W13 Sim. to Benz. v9b C-H Bend 1127 1160 1171 1123 

W16 Benz. C-C Str. 1016 1009 1045 1040 1035 

W17 Sim. to Benz. v12 + Nl-H 880 877 889 872 874 

W18 Indole Ring Breath. 762 760 778 769 769 

N-H Stretch 3420 3668 3606 

Benz. v20a 2950 3197 3206 3229 

CH3 Vibration 2860 3033 3027 3036 

Nl-H + C2-H Bend 1090 1116 1203 

C2-H out-of-plane bend 805 785 892 987 

Benz. vn 740 755 765 778 

a Atom numbering as in Figure 1.1 = 3-methyl indole, 2 = 3-methyl indole neutral radical, 3 = 3-methyl indole cation radical. 

Tryptophan mode (Austin, Jordan, and Spiro 1993). 
c Approximate description of the tryptophan mode (Austin, Jordan, and Spiro 1993). Other mode assignments from this work. 
d Frequencies from Takeuchi and Harada (1986) and Su, Wang, and Spiro (1990). 
e Frequencies from Sweeney and Asher (1990). 
f Frequencies from Aldrich Library FT-IR Spectra (1989). 
^ This represents a combination of modes, but does possess significant C2-C3 motion. 



average of 3.1% from the experimental frequencies, the former being generally larger. The level of 

agreement is comparable to that seen by Stephens and coworkers (Stephens et al. 1994; Stephens et al., 

to be published; and Finley and Stephens, to be published). The most significant change in the vibrational 

frequencies in going from 1 to 2 or 3 can be seen in mode W3, which is principally the C2-C3 stretch. 

In 1, this mode is calculated to be at 1,615 cm-1; in 2 it shifts to 1,455 cm-1; and in 3 it decreases even 

further to 1,295 cm-1. In 3, this mode is a mixture of several modes; however, it does contain significant 

C2-C3 movement. The reason for this change is not obvious, but, as noted later, the largest difference 

in the calculated spin densities between 2 and 3 occurs on C2. 

Calculated Mulliken spin densities of 2 and 3 using the B3LYP functional and the TZ2P, 6-3 IG*, 

6-31+G*, and 3-21G* basis sets are reported in Table 3. The B3LYP/TZ2P spin densities for 2 and 3 are 

significantly different from each other, providing the possibility of experimental discrimination of the two 

species. Both have significant spin density on the benzene ring, where the change in spin density 

distribution is relatively small between 2 and 3. The pyrrole ring, however, is significantly affected by 

the retention or loss of the Nl hydrogen. Both species have significant spin density on Nl and C3, though 

these are quantitatively different, while C2 goes from negative to significantly positive spin density from 

2 to 3. 

The calculated spin densities using the B3LYP functional and the 6-31G*, 6-31+G*. and 3-21G* basis 

sets change an average (per atom) of 0.010, 0.015, and 0.025 for 2 and 0.006, 0.023, and 0.019 for 3, 

respectively, when compared to the results obtained with B3LYP/TZ2P. Clearly, there is little apparent 

gain in accuracy in using the TZ2P basis set vs. the 6-3 IG* basis. However, the inclusion of diffuse 

functions (6-31+G* basis set) does appear to have a some what larger effect. 

B3LYP/TZ2P Mulliken spin densities for 2 and 3 are compared to experiment (Huyett et al. 1995) 

in Figure 2. Table 3 also shows the ROSHF (Krauss and Garmer 1993) and HMMO (Hoffman et al. 

1981) calculations cited previously for comparison. For the experimental spin densities of atoms in 

tryptophan-191 of CCP that have been determined, there is excellent agreement with the calculated spin 

densities for 3, and much poorer agreement with those calculated for 2. These results are in agreement 

with Huyett et al. (1995) that the tryptophan radical in CCP is indeed a cation radical. In addition, these 

calculations also indicate that the spin density distribution for the radical is probably not appreciably 

perturbed by the protein environment. The average deviation between theory and experiment for these 

atoms is 0.056 for 3, and 0.213 for 2. 



-0.05 

0.15 

-0.09 

0.19 

B 

Figure 2. A: Experimental spin densities (Huvett et al. 1995) for tryptophan-191 of cvtochrome-c- 
peroxidase; B: Calculated Mulliken spin densities for the neutral radical of 3-methyl indole 2; 
and C: Calculated Mulliken spin densities for the cation radical of 3-methvl-indole 3. B and 
C utilize the Becke3LYP functional and the TZ2P basis set 
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The B3LYP/TZ2P results presented here represent accurate gas phase results and should therefore be 

applicable to any tryptophan or indole radical. EPR studies of the tryptophan radical in DNA photolyase 

(Kim et al. 1993) that utilized isotopically labeled tryptophan were interpreted as originating from a cation 

radical. These conclusions were based on comparison to the HMMO (Hoffman et al. 1981) calculations, 

which yielded very small spin density on C2 and large spin density on Nl for the neutral radical, with the 

opposite being the case for the cation radical (Table 3). The B3LYP/TZ2P calculations show significant 

spin density on Nl for both species (albeit twice as large for 2) and significant negative spin density on 

C2 for the neutral species. While the tryptophan radical in DNA photolyase may indeed be a cation 

radical, the interpretation of the isotope/EPR study may not be so straightforward. 

Photochemically induced dynamic nuclear polarization (photo-QDNP) experiments (McCord, Bucks, 

and Boxer 1981; Stob and Kaptein 1989; and Hore and Broadhurst 1993) on the tryptophan cation radical 

have revealed that significant spin density exists on C2, C3, C4, C6, and Nl, and that no significant spin 

density exists on C5 and C7. For example, McCord, Bucks, and Boxer (1981) deduced proton isotropic 

hyperfine coupling constants from photo-CIDNP experiments on the tryptophan cation radical in the 

following relative order of absolute magnitude: C3 » C2 ~ C4 ~ C6 > Nl » C5 > C7, and with Nl, 

C2, C3, C4, and C6 being positive, C5 negative, and C7 essentially zero. This is in excellent accord with 

the B3LYP/TZ2P spin densities calculated for 3. 

Comparing the HMMO (Hoffman et al. 1981) spin densities for indole to the experimental spin 

densities for tryptophan-191 of CCP, the average deviation from experiment is 0.055 for the cation radical 

and 0.148 for the neutral radical, making the choice of cation or neutral radical less clear, though still 

correct The average deviation for the ROSHF (Krauss and Garmer 1993) theory and the CCP experiment 

is 0.063 for the cation radical and 0.316 for the neutral radical, which is in slightly worse agreement for 

both 2 and 3 with experiment than the B3LYP/TZ2P numbers. The similar agreement with experiment 

appears largely fortuitous. On the pyrrole ring, the ROSHF (Krauss and Garmer 1993) calculations differ 

most (when compared to the B3LYP/TZ2P calculations) for the neutral radical, where they predict zero 

spin density on C2, too much spin density on Nl, and a change in spin density in the wrong direction for 

C3 going from neutral to cation. The HMMO (Hoffman et al. 1981) calculations show no change in spin 

density on C3, small positive spin density on C2, and not enough spin density on Nl for the cation. More 

dramatically, the spin density distribution for both of the ROSHF (Krauss and Garmer 1993) calculations 

severely underestimate the significant spin density in the benzene ring predicted by the B3LYP/TZ2P 

calculations on both 2 and 3 and observed in the photo-CIDNP experiments (McCord, Bucks, and Boxer 

13 



1981; Stob and Kaptein 1989; and Höre and Broadhurst 1993) for the tryptophan cation radical. The 

HMMO (Hoffman et al. 1981) calculations do show significant spin density on C4 and C6 of the benzene 

ring. For the relevant labeling experiments, the EPR spectra of the tryptophan radicals are predicted to 

exhibit a greater spectral extent by the B3LYP/TZ2P calculations than either of the older calculations. 

Based on results in the recent literature (Adamo, Barone, and Fortunelli 1995; Qin and Wheeler 1995) 

and the agreement with the CCP and photo-CIDNP experimental data for the cation radical, we conclude 

that the errors in the B3LYP/TZ2P calculated spin densities presented previously are relatively small. 

Errors can come from the use of Mulliken population analysis for determining atomic spin densities, from 

spin contamination (see section 2), and from deficiencies in the B3LYP functional. 

MP2/6-31G** spin densities for 2 and 3 are also reported in Table 3. Comparing the predicted spin 

densities with the experimental spin densities for tryptophan-191 of CCP show differences of 0.570 and 

0.321 for 2 and 3, respectively. The spin densities for both 2 and 3 are in substantially worse agreement 

with experiment than the B3LYP/TZ2P calculations. Qualitatively, the results are slightly better, as they 

predict a decrease, increase, and decrease in spin density on Nl, C2, and C3 respectively in going from 

2 to 3. The quantitative deviation from experiment results from the individual absolute spin densities 

being much too large. Additionally, while the MP2/6-31G** calculations predict spin density on the 

benzene ring, no significant spin density is predicted for C6, in disagreement with the photo-CIDNP 

experiments (McCrod, Bucks, and Boxer 1981; Stob and Kaptein 1989; and Hore and Broadhurst 1993). 

The failure of MP2 in this case may be due to problems identified in the prediction of other ground state 

properties for conjugated molecules at this basis set level (Simandiras et al. 1988) or, more likely, to the 

significantly higher level of spin contamination (see section 2) evidenced in the MP2 calculations. 

As this study was being completed, we became aware of a study of calculated spin densities on indole 

cation and neutral radical using the SVWN (Becke 1989; Vosko, Wilk, and Nusair 1980; Lee, Yang, and 

Parr 1988) functional and the 6-31G* basis set (Waiden and Wheeler 1994; 1995; to be published). The 

results obtained for both species are qualitatively similar to those reported here, for both the pyrrole and 

benzene rings. The spin densities obtained in this study (Waiden and Wheeler 1994; 1995; to be 

published) for the atoms relevant to the CCP tryptophan-191 ENDOR data are, for the cation 

radical/neutral radical: 0.12/0.23 for Nl, 0.14/-0.03 for C2, 0.30/0.48 for C3, and -0.04/-0.02 for C7. 

This results in average deviations between theory and experiment for the cation and neutral indole of 0.093 

and 0.148, respectively, and are somewhat worse than those for 2 and 3 and B3LYP/TZ2P reported here. 

14 



The most notable differences are in the quantitative values for C3, and the lack of significant negative spin 

density on C2 in the neutral radical. These differences may result from the absence of a methyl group 

on C3 or from the different choice of functional, or both. 

A thorough evaluation of the accuracy of the B3LYP/TZ2P spin densities must await the determination 

of additional experimental spin densities. For CCP, this will require additional isotopic labeling schemes 

beyond those previously employed in the ENDOR studies (Huyett et al. 1995) to test the prediction of 

large spin densities on C4 and C6 (as well as the benzene ring in general). Data on an authentic neutral 

radical and spin density determinations for other known biological tryptophan radicals (Kim et al. 1993; 

Sahlin et al. 1994, 1995) are also desirable. 

This study has provided a sound basis for the identification of the radical species in compound ES of 

CCP as the cation radical of tryptophan-191. The stability of this species near neutral pH remains to be 

explained and modeled quantitatively. Accurate ab initio parameters (electrostatic potential, partial 

charges, energies) coupled to a practicable and reasonably accurate solvent and protein model (Churg and 

Warshel 1986; Langen et al. 1992; and Jensen, Warshel, and Stephens 1994) should lead to a quantitative 

explanation of the factors responsible for the stability of the cation radical in CCP. 
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